【注意】最后更新于 July 9, 2024,文中内容可能已过时,请谨慎使用。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
object Main1 extends App {
val system = ActorSystem("HelloSystem")
val jazzListener = system.actorOf(Props[Listener])
val musicListener = system.actorOf(Props[Listener])
system.eventStream.subscribe(jazzListener, classOf[Jazz]) // jazzListener 订阅 Jazz 事件
system.eventStream.subscribe(musicListener, classOf[AllKindsOfMusic]) // musicListener 订阅 AllKindsOfMusic 以及它的子类 事件
// 只有 musicListener 接收到这个事件
system.eventStream.publish(Electronic("Parov Stelar"))
// jazzListener 和 musicListener 都会收到这个事件
system.eventStream.publish(Jazz("Sonny Rollins"))
}
|
subscribe 逻辑
同步地将 subcriber 和 to 加入到 subscriptions 中,diff 应该是和之前的一次比较保证不会重复发送?
1
2
3
4
5
|
def subscribe(subscriber: Subscriber, to: Classifier): Boolean = subscriptions.synchronized {
val diff = subscriptions.addValue(to, subscriber)
addToCache(diff)
diff.nonEmpty
}
|
addValue 中有个比较重要的方法,就是从 subkeys
也就是 subscribe 中到找对应的类。
可以将 subkeys
想象为一个多叉树中的一个节点,节点的 key 为订阅源类型,value 为所对应的订阅者 Actor
然后这个节点也有自己的 subkeys
这些 subkeys 为的 key 为上层类型的子类,同时订阅者是与是上层订阅者的拓展
对于重复的订阅,他会做一次去重,类似于 arc diff
对于 system.eventStream.subscribe(jazzListener, classOf[Jazz])
会产生一个这样的 diff 然后加入到 cache 中
cache 的数据结构是一个 private var cache = Map.empty[Classifier, Set[Subscriber]]
Map 分别是订阅源和订阅者
对于 system.eventStream.subscribe(musicListener, classOf[AllKindsOfMusic])
publish 逻辑
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
def publish(event: Event): Unit = {
val c = classify(event)
val recv =
if (cache contains c) cache(c) // c will never be removed from cache
else
subscriptions.synchronized {
if (cache contains c) cache(c)
else {
addToCache(subscriptions.addKey(c))
cache(c)
}
}
recv.foreach(publish(event, _))
}
|
publish 逻辑较为简单,首先会从 event 中找出对应 className
然后走缓存逻辑,如果不在缓存中存在,就将对应的 key 更新到 subkeys 多叉树中,找到对应的订阅者,并且更新到 cache 中。
最后遍历 recv 调用 publish 函数。
1
2
3
4
|
protected def publish(event: Any, subscriber: ActorRef) = {
if (sys == null && subscriber.isTerminated) unsubscribe(subscriber)
else subscriber ! event
}
|
Actor 初始化
1
2
|
val pinger = system.actorOf(Props[Pinger], "pinger")
val ponger = system.actorOf(Props(classOf[Ponger], pinger), "ponger")
|
会调用 ActorSystem 中的 actorOf 方法
1
2
3
4
5
|
def actorOf(props: Props): ActorRef =
if (guardianProps.isEmpty) guardian.underlying.attachChild(props, systemService = false)
else
throw new UnsupportedOperationException(
"cannot create top-level actor from the outside on ActorSystem with custom user guardian")
|
会从守卫 Actor 下面创建一个新的 Child Actor
会调用下边的 makeChild 方法:
Children.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
val actor =
try {
val childPath = new ChildActorPath(cell.self.path, name, ActorCell.newUid())
cell.provider.actorOf(
cell.systemImpl,
props,
cell.self,
childPath,
systemService = systemService,
deploy = None,
lookupDeploy = true,
async = async)
}
initChild(actor)
actor.start() // 绑定 actor 到 dispatcher
actor // 返回 actor ref
|
Tell 实现
1
2
|
final def sendMessage(message: Any, sender: ActorRef): Unit =
sendMessage(Envelope(message, sender, system))
|
将 message 包装为信封,调用 Cell 的 sendMessage 方法
是因为 Cell 实现了
Dispatch 特质
其实是执行的 Dispatch 特质中的 sendMessage 方法
1
2
3
4
5
6
7
8
|
def sendMessage(msg: Envelope): Unit =
try {
val msgToDispatch =
if (system.settings.SerializeAllMessages) serializeAndDeserialize(msg)
else msg
dispatcher.dispatch(this, msgToDispatch)
} catch handleException
|
但是我仍然有个问题,dispatcher 是我自己规定的 dispather?
再调用这个 Actor 所对应的 dispatcher 的 dispatch 函数
1
2
3
4
5
|
protected[akka] def dispatch(receiver: ActorCell, invocation: Envelope): Unit = {
val mbox = receiver.mailbox
mbox.enqueue(receiver.self, invocation)
registerForExecution(mbox, true, false)
}
|
将信封丢入对应接收者的 mailbox 中,然后将 mbox 作为参数传入 registerForExecution 注册到线程池中。
而这个线程池就是我预设的线程池,dispacher 只是对这个线程池做一层封装。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
protected[akka] override def registerForExecution(
mbox: Mailbox,
hasMessageHint: Boolean,
hasSystemMessageHint: Boolean): Boolean = {
if (mbox.canBeScheduledForExecution(hasMessageHint, hasSystemMessageHint)) { //This needs to be here to ensure thread safety and no races
if (mbox.setAsScheduled()) {
try {
//!!!!
executorService.execute(mbox)
true
} catch {
...
}
} else false
} else false
}
|
使用内部的线程池来执行这个 MailBox 对象
既然 MailBox 可以被执行它一定实现了 Runnable 方法来看看他的实现:
1
2
3
4
5
6
7
8
9
10
11
|
override final def run(): Unit = {
try {
if (!isClosed) { //Volatile read, needed here
processAllSystemMessages() //First, deal with any system messages
processMailbox() //Then deal with messages
}
} finally {
setAsIdle() //Volatile write, needed here
dispatcher.registerForExecution(this, false, false)
}
}
|
来主要看一下 processMailbox 方法的实现吧
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
@tailrec private final def processMailbox(
left: Int = java.lang.Math.max(dispatcher.throughput, 1),
deadlineNs: Long =
if (dispatcher.isThroughputDeadlineTimeDefined)
System.nanoTime + dispatcher.throughputDeadlineTime.toNanos
else 0L): Unit =
if (shouldProcessMessage) {
val next = dequeue()
if (next ne null) {
if (Mailbox.debug) println(actor.self + " processing message " + next)
actor.invoke(next)
if (Thread.interrupted())
throw new InterruptedException("Interrupted while processing actor messages")
processAllSystemMessages()
if ((left > 1) && (!dispatcher.isThroughputDeadlineTimeDefined || (System.nanoTime - deadlineNs) < 0))
processMailbox(left - 1, deadlineNs)
}
}
|
很简单的实现,使用了尾递归的方式,
- 首先计算出 left 也就是分发器的吞吐量
- 然后从队列里面出队一个元素
- 调用 actor 的 invoke 方法
- 继续向下调用直到 left < 1 或者
有两个关键的参数,
throughput 也就是单次执行 executorService.execute(mbox)
所消费消息的数量。超出这个数量的消息将会交给下次执行这个 mbox 的时候执行。
deadlineNs
发送 throughput 数量消息的截止时间,保证 throughput 的消息要在截止时间内完成。
调用 actor 的 invoke 方法下面会调用 ActorCell 的 receiveMessage 方法
actor.aroundReceive(behaviorStack.head, msg)
获得栈顶的 Receive 偏函数,调用 aroundReceive 来执行操作
1
2
3
4
5
6
|
protected[akka] def aroundReceive(receive: Actor.Receive, msg: Any): Unit = {
// optimization: avoid allocation of lambda
if (receive.applyOrElse(msg, Actor.notHandledFun).asInstanceOf[AnyRef] eq Actor.NotHandled) {
unhandled(msg)
}
}
|
如果 receive 没有 match 对应的 message,使用了偏函数的 applyOrElse 捕获剩下的值域,判断返回值是否和 NotHandled 相等。
1
2
3
4
5
6
|
def unhandled(message: Any): Unit = {
message match {
case Terminated(dead) => throw DeathPactException(dead)
case _ => context.system.eventStream.publish(UnhandledMessage(message, sender(), self))
}
}
|
对 message 做一次模式匹配,如果是没有 handle 的 message 就将它作为订阅发出。
这里我们可以使用一个订阅者 system.eventStream.subscribe(listener, classOf[UnhandledMessage])
来订阅这些消息,进行日志输出。
文章作者
xiantang
上次更新
2024-07-09
(9ac8718e)